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This paper describes the system design developed for Team Gator Nation’s submission
to the 2007 DARPA Urban Challenge. A hybrid Toyota Highlander has been automated
and instrumented with pose estimation (GPS and inertial) and object detection (vision and
ladar) sensors. The control architecture consists of four primary elements, i.e. Planning
Element, Perception Element, Intelligence Element, and Control Element. The Intelligence
Element implements the Adaptive Planning Framework developed by researchers at the
University of Florida. This framework provides a means for situation assessment, behav-
ior mode evaluation, and behavior selection and execution. The architecture is implemented
on a system distributed over ten dual-core computers that intercommunicate via the Joint
Architecture for Unmanned Systems (JAUS) version 3.2 protocol. This work’s primary con-
tribution addresses the technical challenges of (a) the reconciliation of differences in estimated
global pose, a priori data, and sensed information, (b) the determination of the appropriate
behavior mode, and (c) the smooth transition of vehicle control between behavior modes.
The processes that perform these tasks as well as the other necessary processes that perform
perception, data integration, planning, and control are described in detail together with their
design rationale. Finally, testing results accomplished to date are presented.
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LWM local world model
MDF mission data file
MPC model predictive control
NFM north finding module
RMS root mean square
RNDF route network definition file
UF University of Florida

I. Introduction and Overview
A. Team Overview

TEAM Gator Nation is comprised of twenty five faculty, students, and engineers from the University of Florida
Departments of Mechanical and Aerospace Engineering, Electrical and Computer Engineering, and Computer

and Information Science and Engineering together with engineers from GE Aviation. The personnel bring together
a broad range of expertise in the area of autonomous unmanned systems. The team participated in both the 2004 and
2005 DARPA Grand Challenge events under the name Team CIMAR.

B. Problem to be Solved
In DARPA’s vision, “The Urban Challenge features autonomous ground vehicles maneuvering in a mock city

environment, executing simulated military supply missions while merging into moving traffic, navigating traffic
circles, negotiating busy intersections, and avoiding obstacles.” Moving the challenge into an urban setting adds
structure and complexity to the Grand Challenge problem. Previous success relied on a single mode of operation,
without interaction with the environment beyond simple traversal. Success in the Urban Challenge will require
numerous modes of operation and complex interaction with the environment. It is expected that the urban environment
will also hamper the use of GPS for localization, further complicating the challenge.

The specific problem to be solved is detailed in the Urban Challenge Technical Evaluation Criteria document.1

Here the problem is organized into four categories, i.e., Basic Navigation, Basic Traffic, Advanced Navigation, and
Advanced Traffic, each of which is more complex than the previous. Upon reviewing this document, the authors
identified the following set of technical challenges:

1. pavement (road) detection and lane detection
2. detection of static obstacles
3. detection and classification of dynamic objects
4. environment data representation and sensor integration
5. localization
6. reconciliation of differences in estimated global pose, a priori data, and sensed information
7. high level mission planning
8. determination of appropriate behavior mode
9. smooth transition of vehicle control between behavior modes

10. interprocess communication and coordination of multiple threads on multiple computers
11. fault tolerance

This paper documents the design choices that have been made to address these challenges.

C. Prior Work and Impact of Current Effort
Much work has been done in the past twenty years to address many of the specific technical challenges listed in

the previous section. Several references2−7 provide excellent summaries of the advancements made by other teams
competing in the 2005 DARPA Grand Challenge. The authors’ work related to the 2005 event is published in two
references.8−9 Numerous additional references can be cited for each of the important technical challenges.

The authors believe that the approach presented here makes new contributions primarily with respect to items 6,
8, and 9 in the preceding list of technical challenges. Traditional approaches, such as for example vision processing
algorithms to identify lane markings in an image, are modified as needed and integrated into the system. However, the
work related to (a) the reconciliation of differences in estimated global pose, a priori data, and sensed information,
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(b) the determination of the appropriate behavior mode, and (c) the smooth transition of vehicle control between
behavior modes is identified as the major contribution of this effort.

D. Summary of Approach and Concept of Operation
A hybrid Toyota Highlander, shown in Fig. 1, has been automated and instrumented with pose estimation (GPS

and inertial) and object detection (vision and ladar) sensors. The main function of the autonomous architecture is to
generate control commands for the vehicle that result in expected and desired behaviors in response to its mission
and the surrounding environment. The approach chosen allows for the behaviors required for the Urban Challenge
to be implemented without changing the control command generation methodology. A challenge in vehicle control
is maintaining consistency in the control commands through time. If an approach requires changing the method of
command generation as different behaviors are required, much care is needed to ensure continuity in the control
commands.

The overall approach is briefly summarized as follows (reference Fig. 2):
(1) An off-line path planning program generates a desired motion path based on the route network definition

file (RNDF) and the mission data file (MDF).
(2) A tessellated Local World Model (LWM) (300 m × 300 m grid with 0.5 m resolution) is generated based

on a priori road network data and the planned motion path. The center point of the LWM is located at the
current location of the vehicle as determined from sensor positioning data.

(3) Data from ladar and vision sensors, which identify static obstacles, dynamic objects, smooth terrain, and
road lane regions, is integrated as a layer into the LWM.

(4) Based on the a priori data and sensed data stored in the LWM, software components referred to as Situation
Assessment Specialists focus on making specific findings (one simple example is the specialist that reports
if the lane to the left, or right, is clear of other vehicles or obstacles).

(5) Six software components referred to as Behavior Specialists then make an assessment of whether their cor-
responding behavior mode is appropriate at this moment. The six behavior modes are Roadway Navigation,
Open Area Navigation, Change Lane, Reverse Direction, Intersection Traversal, and Parking.

(6) A software component referred to as the Decision Broker selects the behavior mode for the system based
on the recommendations of the Behavior Specialists.

(7) Based on the behavior mode, a software component called the Smart Arbiter then generates a 60 m × 60 m
traversability grid that is formed to elicit a specific response from the vehicle (change lanes is an example).

Fig. 1 Team Gator Nation NaviGATOR.

1061



CRANE ET AL.

Fig. 2 System architecture.

(8) Finally, the Receding Horizon Controller component plans a suitable path through the grid that was output
by the Smart Arbiter. Steering, throttle, and braking commands are generated to execute the planned path.

The design and implementation of this control approach is detailed in Section 2 of this paper. The system compo-
nents are shown in Fig. 2, however the figure itself cannot convey the nature of the interactions that occur between
components as was presented in the list in the previous paragraph.

E. System Architecture and Framework
The system architecture is a natural extension of the Joint Architecture for Unmanned Systems (JAUS) Reference

Architecture, Version 3.2, which defines a set of reusable components and their interfaces. The actual core software
to support the JAUS messaging system was developed and extensively tested for the previous Grand Challenge and
supports the current effort with little or no modification required.

At the highest level, the architecture consists of four basic elements, which are depicted in Fig. 2. The Planning
Element contains the components that act as a repository for a priori data such as the RNDF and the MDF. This
element also performs the high level route planning and re-planning based on that data plus real-time information
provided by the rest of the system. The Control Element contains the Primitive Driver that performs closed-loop
control on vehicle actuators to keep the vehicle on a specified path. The Perception Element contains the components
that perform the sensing tasks required to determine the vehicle’s position, to find a road, to find the lanes on a paved
road, to locate both static and dynamic obstacles, and to evaluate the smoothness of terrain. Finally, the Intelligence
Element contains the components that work together to determine the best course of action to navigate the vehicle
in a complex environment based on the current mission and situation.
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II. Analysis and Design
The detailed system design and design rationale are presented in this section. The description is divided into ten

subsections, i.e., vehicle design, computer architecture, localization, high level planning, LWM, perception, adaptive
planning framework, behaviors, smart arbiter, and motion execution.

A. Vehicle Design
A survey of commercially available vehicles led to the consideration of hybrid type SUV’s. A Toyota Highlander

Hybrid vehicle was selected. This vehicle is a full hybrid, capable of running on the electric power train and/or the
V6 internal combustion engine. The vehicle has a wheel base of 2.715 m, a width of 1.825 m and a height of 1.735 m.
Vehicle weight as delivered is 1850 kg (4070 lbs). The Toyota Highlander Hybrid’s chassis has undergone NHTSA
crash testing. Toyota equips the vehicle with anti-lock braking, traction control, skid control, and electronic power
steering. It was desired that the automation design not bypass these Toyota stability features.

The nature of a full hybrid requires that the throttle and brake be drive-by-wire. Automation of these controls is
effected via an interface with the brake and throttle sensors to allow computer input of control signals to the vehicle
control architecture. A servo-motor has been installed on the steering column to replace the human input to allow
drive-by-wire behavior of the steering subsystem. The shift lever is automated via a servo actuator. The wiring harness
has been modified to allow turn signals and brake lights to function as needed. The reverse indicator lamps function
as usual when the shift actuator places the vehicle in reverse. The drive-by-wire implementation is controlled by a
touch-screen tablet located in the front seat. This computer handles the low level interface with the vehicle.

The Toyota Highlander Hybrid has an electrical system suitable for powering the automation and compute resource
requirements for the DARPA Urban Challenge. The high voltage DC system includes a battery bank based on nickel-
metal hydride cells. The bank has high availability, able to provide 45 kw for short durations. The nominal voltage of
the bank is 288VDC. This battery system sources a 12VDC output converter that replaces a conventional alternator.
The autonomous and compute power systems are sourced from both the high voltage DC system and the 12VDC
systems.

Safety protocols are implemented via in-car and on-car e-stop switches and an off-car safety radio. The safety radio
mimics the functionality of the Omnitech DGCSR(RX) safety radio. Emergency stop is affected via a mechanical
system that applies braking effort.

B. Computer Architecture
Compute resources are designed and specified to allow flexibility and expansion as needed. Designing the power

system for efficiency is a major concern because power availability is the driving limit on the maximum compute
resources that can be deployed.

The compute resources system designed for use in the Urban Navigator can consist of up to 12ATX form factor
motherboards with two available Gig-E network switches. The resources are housed in a custom designed and
fabricated enclosure mounted in place of the third row seat of the vehicle as shown in Fig. 3. Each motherboard
is powered by a nominal 12VDC sourced ATX power supply. The power supplies are capable of maintaining
operation down to ∼8VDC. The compute resources currently deployed consist of 10ATX server type socket AM2
motherboards with built-in dual Gig-E network controllers. The CPUs deployed are AMD X2 4600 EE’s. Booting
and storage resources are 4 Gigabyte compact flash cards and 80 Gigabyte laptop hard drives. Operating systems
deployed are Windows XP and Linux Fedora Core 6. I/O connectivity for sensors has been implemented via USB
or Ethernet, to minimize complexity. The currently deployed system consumes between 25 and 45 amps at 14VDC,
depending on system load. Again, the particular computer resources were selected to minimize power consumption
and to provide reliable operation.

In-car development is facilitated via a dual head KVM connected to all motherboards. A rear facing monitor is
mounted to the headrest of each front seat. Keyboards and pointing devices are located in the second row seats.
Off-car monitoring and development is affected by an 802.11 b wireless bridge with a minimum 250 meter range.

C. Localization
Geo-localization is achieved using a GE Aviation North-Finding-Module (NFM) combined with four GPS units

and two odometers. The NFM is an inertial navigation system that maintains Kalman Filter estimates of the vehicle’s
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Fig. 3 Computer rack and power conditioning equipment.

Fig. 4 GPOS components.

global position and orientation as well as angular and linear velocities. The overall system (referred to as GPOS) is
shown in Fig. 4.

The system design is predicated on redundancy and relative accuracy when GPS is lost. The GPS signal provided
to the NFM comes from one of the four onboard GPS units. They include two Novatel Propak, V3-HP units with
Omnistar subscription service, and two Garmin WAAS Enabled GPS 16 units. An onboard computer simultaneously
parses data from the four GPS units and routes the best-determined signal to the NFM. This is done to maintain the
best available GPS information to the NFM at all times. The best GPS solution is determined by evaluating each signal
with respect to its unit type, mode of operation, HDOP, RMS, number of satellites, and duration of uninterrupted
signal among other criteria. The NFM has been programmed to use a different set of tuning parameters in its Kalman
Filter depending on what type of GPS signal it is receiving.

In the event that all GPS units lose track of satellites, as seen during GPS outages such as when the vehicle is in
a tunnel, the NFM will maintain localization estimates based on inertial and odometer data. This allows the vehicle
to continue on course for a period of time; however, the solution will gradually drift and the accuracy of GPOS will
steadily decrease as long as the GPS outage continues. Under ideal conditions the GPOS system typically maintains
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Fig. 5 (a) GPOS repeatability data, (b) magnified view.

Global position accuracies and repeatability in the range of 0.1 to 0.5 meters. Figure 5 shows five laps around a 0.6
mile test track with GPS (blue lines) and five laps with no GPS (red lines). The vehicle was driven as close as possible
in the center of the road (road edges are 28′ apart and are marked by green lines) for every lap. Without GPS, the NFM
was using only the encoder signals to damp the velocity errors. Under these conditions the GPOS system maintains
Global position accuracies less than 5 meters for a distance traveled of approximately 3 miles without GPS.

D. High Level Planning
The High-Level Planner (HLP) provides overall guidance to the Urban NaviGator. Its goals are to:
1. Create a representation of the RNDF that readily allows for efficient data manipulation during route planning,
2. Use the MDF to plan a route through the RNDF representation using an A∗ algorithm,10

3. Periodically communicate waypoints to the Local World Model, so it has an accurate record of the immediate
planning space,

4. Re-plan a route when obstacles are encountered, and
5. Collect data from the sensors about the domain as it is explored and populate the RNDF representation with

these data so it contains a more accurate representation of the domain.
One problem with the RNDF is that it provides a rough representation of the entire domain. Figure 6(a) shows

four waypoints from the provided, sample RNDF. The light blue line details the actual roads that should be followed
while the dark blue line details the naïve, “as the crow flies” path between these points. Initially, every road segment
within the RNDF is flagged as unexplored. When traversing a segment for the first time, “breadcrumbs” (additional
waypoints) are created to fill in details about the segment, and the segment is marked as explored (see Fig. 6(b)). The
distance between these “breadcrumbs” will vary depending on characteristics (e.g., curves and road surface) of the
segment. These “breadcrumbs” allow the representation of additional details about the segment that can be used as
heuristic information by the A∗ algorithm in planning later missions.

While the HLP maintains the overallA∗ generated mission path, The LWM works on a much finer (300 m × 300 m)
scale. Periodically, the HLP determines and transfers to the Local World Model a local long-range (150 meter ahead)
view of the domain. The LWM uses this information for localized path planning. As the Urban NaviGator advances
along the local path generated by the Local World Model, any generated “breadcrumbs” and sensor data valuable to
future path planning are communicated back to the HLP so they can be added to its RNDF representation.

E. Local World Model
The LWM has multiple roles within the system architecture. First, it generates a model of the world based on the a

priori RNDF. It receives a subset of the RNDF waypoints within a 300 m × 300 m area of the vehicle from the High
Level Planner (HLP) and draws an estimated picture of the world into a rasterized grid using a resolution of 0.5 m.
This raster based approach was chosen because the output from the LWM can then be easily incorporated into other
system components. The grid resolution of 0.5 m was chosen from experience in the 2005 DARPA Grand Challenge,
but can be varied depending on the mission. For example, it is anticipated that a finer grid will be needed when
maneuvering in a parking lot scenario. Figure 7(a) shows an example of the 300 m × 300 m grid. Other components,
such as the perception components, which are discussed in the next section, work with a smaller 60 m × 60 m
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Fig. 6 (a) Sparse RNDF data, (b) RNDF data augmented with history information.

grid. Any needed information is extracted from the 300 m × 300 m grid and can be transmitted to any necessary
components. Figure 7(b) shows such a sub-sampled grid.

After the initial estimate of the world is created from the RNDF, the LWM localizes the vehicle position in the
world using data from the GPOS component as well as lane finding and path finding sensors. The lane finding and
path finding sensors are incorporated to account for possible discrepancies between the RNDF and the GPOS data.
The LWM takes the information about the sensed world such as the number of lanes detected and the position of

Fig. 7 (a) 300 m × 300 m raster LWM, (b) Sub-sampled 60 m × 60 m grid.
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Fig. 8 Arbitration of discrepancy in GPOS data, RNDF data, and sensed data.

the center of the sensed lane, and adjusts the a priori world map to fit the sensed world. Figure 8 gives examples
where adjustment is necessary. In this figure, the black lines represent the actual road as it is sensed relative to the
vehicle, the brown lines are based on the RNDF, and the blue rectangle signifies the vehicle position which is based
on GPOS. In (a) either GPOS is incorrect or the RNDF points are not in the lane. In (b) the waypoints do not describe
the road accurately. Using data from the lane and path finding sensors the LWM accounts for these errors. In (c) the
RNDF map has been shifted to align the RNDF road and the sensed world. In (d), the LWM has added additional
waypoints to correct for the discrepancy between the RNDF and the real road.

Next, The LWM is responsible for characterizing, predicting, and injecting dynamic information into the world
model, which can then be propagated throughout the system. A list of objects is received from the Moving Object
and Classification sensor which provides the position, velocity, and size of the detected objects. The LWM overlays
these objects onto the world map and estimates their future position based on velocity and direction of travel. A
probabilistic determination of the future position is used to give regions where it is highly likely the vehicle will be.
The addition of the moving obstacle information allows the Urban NaviGator to have a better understanding of what
is happening in the world. Figure 9 shows the LWM output with a moving obstacle shown by the large blue rectangle
and its estimated future position shown in red.

Finally, the Local World Model dynamically spools waypoints to the Receding Horizon Controller. After the HLP
has planned a path that completes the mission, it provides a rough plan to the LWM that contains only the checkpoints,
entry points, and exit points that need to be traversed. The LWM then takes the rough plan and fills in the intermediate
waypoints that need to be traversed to travel from one HLP point to another. This provides the flexibility to modify
the waypoints that need to be traversed based upon the current operating behavior without re-planning the overall
mission. Figure 10 shows the change in the mission waypoints based upon a change in the operating behavior. In
(a) all the mission points sent by the HLP are shown. This mission involves making a loop around the course and
coming to a stop at the segment at the bottom. In (b) a number of intermediate points have been filled in to be sent
to the Smart Arbiter component (discussed subsequently). All points up to a set distance away from the vehicle are
sent. In (c) the mission points have been shifted to the other lane in order to execute a change lane behavior due to
the obstacle (solid blue rectangle) detected in the same lane.

In summary, the LWM provides a detailed 300 m × 300 m representation of the environment around the vehicle. It
receives a priori roadway data from the High Level Planner as well as static and dynamic obstacle and lane information
from the perception system. The LWM constantly estimates any discrepancies between the a priori and sensed data
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Fig. 9 Moving obstacle depicted in local world model.

by calculating a net offset that can be applied to the a priori data in the event that sensed data is momentarily lost.
Lastly, the LWM maintains a list of mission goal points that identify the correct lane of travel. This information is
transmitted to the Smart Arbiter component (discussed subsequently) for motion execution.

F. Perception
1. Sensors

The sensor packaged deployed on the vehicle includes an array of LADAR and vision sensors. These include six
SICK LMS-291 LADARs, two SICK LD-LRS1000 long range LADARs, six Matrix Vision BlueFox high-speed
USB2.0 color cameras, and an additional BlueFox camera configured to see in the near IR band. Moreover, many
of the sensors deployed on the vehicle are articulated with one degree of freedom. Figure 11 depicts the sensor
configuration.

Fig. 10 Dynamic update of intermediate points.

1068



CRANE ET AL.

Fig. 11 Sensors.
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The LADAR sensing package is designed to provide high-rate obstacle and terrain evaluation. To do so, three
categories of sensing components were designed to meet the needs of obstacle avoidance and terrain characteri-
zation. These categories include long-range obstacle detection, medium/short-range obstacle detection, and terrain
classification.

For long-range detection two SICK LD-LRS1000 LADARs were mounted on the driver and passenger front
quarter-panels. These sensors provide effective range information to 300 meters at rates of up-to 15 Hz with resolution
at distance to within one meter. Moreover, the sensors are vertically offset to allow for the perception of differential
height obstacles and to prevent the inadvertent flashing of each LADAR by the other.

Medium/short-range obstacle detection is accomplished by considering both obstacles detected by the long-range
sensors in addition to those detected by any of the six LMS-291 type sensors. Of these, two are oriented in a planar
fashion on articulated mounts, located on the front and rear bumpers, which allow the sensor to be pitched from 90◦
below to 20◦ above the plane of the vehicle. This feature is used to accomplish both enhanced terrain classification
in tight-spaces such as parking lots as well as to maintain parallelism with the horizon of the road surface during
roadway navigation behaviors. Figure 12 illustrates the front actuated planar LADAR.

Negative obstacle and terrain classification is accomplished primarily through the use of an additional two LMS-
291 LADARs mounted on the sensor bridge in the forward segment of the roof of the vehicle in a downward-pitched
orientation with their focal points set at 20 and 30 meters respectively. These sensors are complemented by another
two LMS-291 sensors located on the overhanging wings of the sensor bridge on the vehicle roof. These sensors are
also articulated and are configured in a vertical-fan orientation. The articulation of the vertical fan sensors provides
active measurement of the environment surrounding the vehicle and plays a major role in vehicle behaviors including
changing lanes, parking, and intersection behavior. Figure 13 depicts the sensor bridge located on the top of the
vehicle.

2. Common Services
The sensor architecture deployed on the vehicle was designed to have common services and interfaces. These

common services include the distribution of acquired sensor data from various sources (serial interfaces, Ethernet,
USB, etc.) to other computing nodes who are requesting the information. All such data-traffic is handled on a
managed L2 Gigabit Ethernet switch which is dedicated to sensor traffic. The services provided include streaming
computer vision information, LADAR range data, and actuator feedback information. This information is consumed
by various computing nodes known as Smart Sensors and used to generate high level information about environment
traversability, obstacle detection, and vehicle localization.

3. Smart Sensor Concept
The smart sensor concept unifies sensor data and results into a generic format. To do so, a standardized data format

and representation was designed which serves as the common data structure for the generation, transfer, and analysis

Fig. 12 Front actuated planar LADAR.
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Fig. 13 Sensor bridge components.

of sensor information. This representation, known as a Traversability Grid, consists of a tessellated grid which is
tied to a geo-spatial location at the time of generation. The grid, utilized in the previous Grand Challenges, has been
expanded to provide a finer resolution of both traversability (the measure of cost for traversing a spatial location)
and an expanded set of reserved values.8 Moreover, the information represented in the grid can easily be used by
arbitration components to generate higher order information and implement behavioral changes to drive planning
and control components to successfully reach their goals. Figure 14 depicts three example traversability grids and
the result of sensor fusion by an arbitration component.

By utilizing a common data representation, developers can work independently of arbitration components. More-
over, the smart sensing components can operate asynchronously at a wide variety of rates and grid resolutions due
to the spatially located nature of the traversability grid.11 This is possible due to the spatial mapping of each grid

Fig. 14 Smart sensor traversability grid fusion.
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as it is fused with the other available sensor information. Thus, the arbitration process takes into account the geo-
spatial offsets between the various Smart Sensor traversability grids when fusing their information so the resulting
representation is consistent as the vehicle moves regardless of speed, orientation, or position.

4. Traversability Smart Sensor
The traversability smart sensor was the primary sensor component that was used by the authors in the 2005

DARPA Grand Challenge. It is incorporated here because it identifies safe regions of travel, i.e., areas where there
are no obstacles to impact and areas where the terrain is relatively smooth. Additional smart sensors are discussed
subsequently that address the specific problems of road and lane detection and dynamic object detection which are
critical to success in the Urban Challenge.

The traversability smart sensor component utilizes the eight LADAR based sensors on the vehicle to perform
analyses for static obstacle characterization, terrain evaluation, and negative obstacle detection. These analyses
are accomplished by utilizing the raw range and orientation information provided by each of the LADAR sensors
to generate a point-cloud representation of the data. The general point information then undergoes a series of
spatial transformations such that all data is mapped relative to the vehicle’s inertial corrected global position and
orientation (GPOS).

i) Vertical Obstruction Detection and Localization The process of detecting vertical obstacles surrounding the
vehicle is driven primarily by information obtained from the front and rear planar LADARs. This data provides
consistent information about obstructions that are taller than the vehicle’s bumper height and represent regions of
the environment that are non-traversable. The two LMS291-S05 sensors provide range estimates in 0.5◦ increments
over a 180◦ arc at 76 Hz. The articulated sensors attempt to maintain the plane of their measurements parallel to the
ground plane with an offset equal to the 0.5 meter mounting height of the sensors. The globally mapped data points
generated by the sensors are then mapped into the corresponding traversability grid cell in which they are bound.
By maintaining statistics regarding the number of hits in a given cell, a traversability value is assigned. Moreover,
the area between cell hits and the origin of the vehicle is designated as free-space. This is accomplished by the use
of Bresenham lines drawn from the location of a hit cell to the sensor’s origin. The cells returned by the Bresenham
lines then have their number of hits reduced, and their traversability re-evaluated.

ii) Terrain Estimation and Characterization Terrain estimation is accomplished by considering data generated by
both the articulated vertical fan ladars located on the sensor bridge wings and the two forward facing pitched ladars
on the center of the sensor bridge. By first mapping the globally referenced data points into the appropriate grid cell
locations, the data is then analyzed for the variance, slope, absolute height, and mean height to generate an estimate
of the best fitting plane within each given grid cell.12 By comparing the slope and height of each plane in both an
absolute sense and relative to the planes in neighboring cells an estimate of traversability is assigned to the given
cell. Figure 15 depicts the output of the terrain estimation process.

Fig. 15 Terrain estimation.
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iii) Negative Obstacle Detection and Localization The detection and localization of negative obstacles is completed
by considering the same data set used for terrain estimation. Particularly, the two forward facing terrain LADARs
provide the most critical information regarding negative obstacles in the immediate path of the vehicle. To this end,
the slope of the forward facing terrain ladars was tuned through testing with various sizes of negative obstacles such
as pot-holes, ditches, and cliff-like changes in grade. Through this testing, which spanned the previous two Grand
Challenges, an optimal declination for each LADAR was found to be 10◦ and 20◦ respectively. This declination
results in the scan-lines of the LADARs hitting at roughly 32 meters and 20 meters ahead of the vehicle while
on a relatively level road. The process of evaluating the information provided by the sensors for negative obstacle
detection is similar in nature to that of terrain estimation. However, the focus of the negative obstacle evaluation is
to look for sudden and drastic changes in range along the scan line. Such dramatic changes in range indicate that a
given scan-line or region of a scan-line has crested over the threshold of a drop-off or hill and indicate a possibly
hazardous part of the environment. Figure 16 displays two such cases where terrain and negative obstacle generate
obstacle information.

5. Lane Finding Smart Sensor
The lane finding smart sensor (LFSS) is a vision based sensing component that generates traversability information

corresponding to the perceived locations of lane demarcations. Through a combination of analyses, images captured
from each of the three forward facing and one rear facing BlueFox cameras are processed to yield geometric
representations of significant painted demarcations and natural boundaries.13 These entities are then analyzed for
color content based on an adaptively tuned set of tolerances and classified appropriately. The result of the lane detection
is a consistent and robust 2nd-order estimate of the location and orientation of perceived lane demarcations.

i) Lane Demarcation Detection and Localization Detection of painted and natural lane/road demarcations is
accomplished by considering multiple environmental cues. These cues include intensity, color content, shape, and
orientation. To begin, the component takes a captured image and performs a row based analysis to detect significant
points of interest. These points of interest are then used to extract sub-images from the source image which will then
be searched for any dominant linear elements. This process is depicted in Fig. 17.

The extraction of linear elements is performed by using the standard Hough transformation. The resulting sequence
of linear elements is then sorted to find the most dominant linear element (if any) in a given sub-image. After
extracting all significant line elements from the image, the resulting lines are first added to an optimized binary
heap for sorting according to angular orientation in a polar reference frame with the origin at the upper left of
the source image.14 This sort aids in the rapid clustering of related elements into groups who are spatially related.
Again, by utilizing a binary heap sorted on angular orientation, a first order approximation of the curve the cluster
of line segments represents can be generated. This approximation is then used to generate a mask image as shown
in Fig. 18.

Fig. 16 Traversability smart sensor (a) terrain estimation; (b) negative obstacle detection.
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Fig. 17 Line finder image analysis (a) region of interest extraction, (b) linear element extraction.

Fig. 18 Line finder image masking (a) first mask, (b) second mask, (c) image from masks, (d) least squares curves.

The resulting masks are applied to the source image sequentially to analyze the color content in the masked region.
This process serves both to identify the color and type of the line entity. The color analysis process is discussed in
detail in the following section. When the analysis is complete, each cluster’s point data is used to solve a second
order approximation by use of the Least Squares method where the optimization function and the resulting partial
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derivatives are of the form15
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By solving the subsequent partial differential equations and for each clusters data set, a series of quadratic
approximations are generated. These approximations have proven fairly robust given the cluster generation process.

ii) Color Classification and Adaptive Tuning The color classification of the masked regions of the source image is
performed in two processes: k-means clustering for adaptive tuning and color segmentation. The first process begins
by taking sub-sampled training regions from the masked image. The RGB content of the cells in the masked regions
are then used to populate a point distribution where the red, green, and blue values of each pixel in the region are
mapped to the x, y, and z axes respectively.16 A sample training region and distribution is presented in Fig. 19.

The color distribution depicted above is then processed using the k-means clustering algorithm to mini-
mize the average deviation from the dominant line which is fit to the clustered pixel information. The k-means

Fig. 19 Color distribution of training region data.

1075



CRANE ET AL.

Fig. 20 Color segmented of masked regions (a) yellow channel, (b) white channel.

algorithm is expressed as

k∑

j=1

∑

i∈Sj

|xi − μj |2 (3)

where x is the RGB pixel vector, μ is the RGB K-mean, k is the number of clusters, and i is the number of pixels.
With the color distribution generated from the training region, each mask undergoes color segmentation to evaluate
whether a given pixel is likely white, yellow, or otherwise. By then analyzing the resulting set of segmented pixels,
an estimate of the line’s color content is generated as a normalized percentage of yellow and/or white content. By
using multiple such training regions through the various masks, the color thresholds used in the segmentation process
become more robust to dynamic changes in lighting or transient elements in the image such as glare and shadow.
Figure 20 depicts the color segmented masks for the yellow and white channels of a given source image.

From the above results, statistical information is generated including the number of color classified pixels, the
total pixels in the mask, and the variance of the pixel content within the mask. Finally, a normalized percentage
representation of how “yellow” or “white” is generated. The results of the normalized comparison of the number
of pixels found to be of a given color to the total number of pixels found in the segment provide a estimate of the
likelihood that a given cluster of line segments represent a given color of line. Moreover, the lack of significant color
content to a region which has significant line content can be discerned to imply a natural boundary or transition from
road to the surrounding environment.

iii) Stop-Line Detection and Localization In addition to the statistics generated by the color segmentation process
and the element clustering process, an estimate of the general-lane-orientation is produced by averaging the linear
elements of the most significant clusters in the image. The result is a reasonable estimate of the orientation of the
perceived road. From this information each cluster’s average slope is then compared to that of the overall average
in an effort to find any significant deviations. Such deviations indicate that a cluster is not only significant but also
generally normal to the direction of the road. Such segments are inferred to have potential to be stop-lines. Figure 21

Fig. 21 Stop-line detection.
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shows an example of an element cluster which has been determined to have significant divergence from the general
orientation of the road and the sub-image which is extracted for further analysis.

By generating an estimate of the location of the perceived stop-line, the smart sensor can aid in both safe roadway
navigation and correction of a priori mapping data contained within the RNDF. These processes are discussed further
in the section on Metadata generation.

iv) Traversability Grid Mapping and Generation Thus far, the results of the various image processing techniques
have only been discussed in terms of the perspective image space provided by the camera. However, to utilize
the results of these analyses, the information must be mapped into the standard traversability grid. This process
is accomplished through the use of a pre-calibrated transformation matrix and rotation matrix to project the pixel
information from image-space to grid-space. The transformation matrix is generated from camera calibration data and
then used to project the calculated line entities onto the traversability grid. However, whereas in the past Challenges,
the entire image was mapped, the improvements in the most recent vision components and the geometric data they
extract make it possible to project only a select set of points along each element. From there, the elements are
reconstructed in the grid-space as a series of connected linear elements which approximate the original curve(s).
Figure 22 depicts a sample lane-finder traversability grid with current, left, and right lanes painted.

v) Metadata Generation In addition to the basic grid representation of the perceived lanes and stop-lines, the Lane
Finding Smart Sensor provides abstracted information in the form of metadata. This metadata currently contains
information regarding the number of lanes perceived, the type of boundaries of the lane the vehicle currently occupies,
and estimates of lane width at various distances ahead of the vehicle. Moreover, the metadata contains the estimated
relative position of any perceived stop-lines and the vehicle’s relative-pose within the lane. The later of the metadata
is critical in both a priori correction and learning, and is also important in driving numerous behaviors.

6. Moving Object Detection and Localization
One of the most critical smart sensing components in development is the moving obstacle smart sensor (MOSS).

The MOSS is responsible for the detection, localization, and classification of both moving and static obstacles which
are perceived to either be in motion or have the potential to move. It should be noted that the choice of sensors for
long-range detection was driven by the need to perceive moving obstacles to provide the necessary time response. In
other words, the range of the chosen SICK LD-LRS1000 LADARS is a function of the minimum safe detection radius
to provide a ten second decision and action period given a moving obstacle at a speed of 30 mph while assuming a
closing speed of 60 mph. From these design criteria it was determined that the vehicle must be able to detect moving
obstacles at a minimum range of 270 meters.

Fig. 22 Lane finder traversability grid (a) with lane boundaries and center estimation, (b) with painted lanes.
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Fig. 23 Moving obstacle smart sensor (a) original scene, (b) point data with Hough lines.

The detection process is accomplished via a fusion of sensing technologies. Foremost is the use of the long-range
LADAR array. The raw range data returned by the array of planar-oriented LADARs is evaluated for vehicle sized
obstructions. From this analysis a list of potential dynamic obstacles is generated. The list is then used to drive a
vision based classification process that utilizes Haar classification. Next, the raw range data provided by the LADAR
is mapped to an image and processed using the Hough transform to extract linear elements.17 From this map, the
relative orientation and location of the candidate obstacles is generated. Haar classification is then completed on
the regions of the image that have been flagged as likely containing a vehicle. The classification then confirms or
refutes the assertion that the obstacle in the given region is a vehicle. It is important to note that detecting stopped
vehicle is as important as detecting moving ones as a stopped vehicle’s future actions are inherently unpredictable.
The result of these processes is the generation of a standardized vector representation of all candidate moving
obstacles.18 Information regarding the obstacle’s location, velocity, classification, and eventually intent (turning,
braking, changing lanes) is then provided to higher level planning elements to take appropriate action. Figure 23
depicts the sample output of the Moving Obstacle Smart Sensor.

7. Path Finding Smart Sensor
The objective of the path finding smart sensor is to detect pavement regions. This is important in cases where

a road has no lane markings or the lane markings are in poor condition or obscured. Vision based and ladar based
components are integrated to accomplish this task.

i) Vision Based Path Finding The vision path finding smart sensor (VPFSS) utilizes the same color segmentation
process employed in the Lane Finding Smart Sensor component with the exception that it is trained to search for asphalt
and other such road materials and textures. By applying the segmentation to the captured images the component
provides a simple yet powerful approximation of where the road is located and adds value to the arbitration process.
Figure 24 depicts the output of the VPFSS.

ii) LADAR Based Path Finding The LADAR based path finding smart sensor (LPFSS) functions in much the same
manor as the VPFSS in that it relies on a combination of image processing techniques to extract a simplified estimate
of the location of smooth, drivable terrain. By generating a topographic image of the terrain from the terrain estimation
LADAR data, the component generates a virtual picture of the terrain. This picture is then processed through a series
of thresholds, erosions, and other enhancement filters to isolate the flat and smooth regions of the image. Figure 25
depicts this process and the resulting traversability grid.

The resulting traversability grid is then processed for line content to determine the right most dominant linear
bound of the path which in turn is used to maintain a right bias while operating in an unstructured environment.
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Fig. 24 Vision path finding smart sensor (a) original scene, (b) segmented image, (c) traversability grid.

Fig. 25 LADAR path finding smart sensor (a) topographic, (b) threshold, (c) traversability grid.
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G. Adaptive Planning Framework
Team Gator Nation has developed and deployed the Adaptive Planning Framework19 to address the issues asso-

ciated with behavior mode selection. This concept is presented in this section. The specific behaviors and arbitration
strategy associated with the Urban Challenge problem is presented in the subsequent two sections.

In the Adaptive Planning Framework, the system is assumed to be able to operate in a finite number of behavior
modes. These behavior modes govern how the vehicle operates under various driving conditions. The framework is
predominantly used to make intelligent decisions pertaining to these behaviors. The framework is scalable to systems
of varying complexity and size and is compatible with existing architectures such as JAUS RA-3.2, NIST 4D/RCS,
and others. The Adaptive Planning Framework is composed of three principle elements tasked with assessing the
situation, determining the suitability and viability of all possible solutions, and executing the most suitable of all
recommended solutions.

1. Situation Assessment Specialists
Dynamic environment information, originating from any array of sensors is monitored and managed by the

Situation Assessment Specialists. Each specialist design is tailored to the sensor or collection of sensors whose data
it analyzes. These specialists can, but are not required to, “live” on the same computing node that directly receives the
sensor input. While the inputs to the specialist can come from any data source, the output or “finding” must adhere to
specific guidelines outlined by the framework. Findings can be in the form of conditions, state, or events. A condition
may have a value of present or absent only. All conditions are by default absent and must be proven present at each
iteration. A finding classified as a state can only exhibit one of many a priori states. The event category is reserved
for findings whose occurrence at some point in time is of significance even after the initial finding has passed. Once
the findings have been generated the information is disseminated to all other components that might need it.

An example of a situation assessment specialist would be a software component whose sole function was to
determine if it is safe to move to the adjacent lane. This component would monitor sensor data as reported by the
Traversability Smart Sensor and reach a Boolean conclusion that would be stored as metadata for use by other
processes. A second example would be a software component whose sole function was to determine if it is “legal” to
move to an adjacent lane. Here “legal” is defined as not crossing a yellow line or not changing lanes when approaching
an intersection.

2. Behavior Specialist
The findings rendered by the Situation Assessment Specialists are consumed by the behavior specialists. There is

a one-to-one mapping of each behavior with a behavior specialist. The role of the specialist is to monitor the findings
and evaluate the suitability of its behavior under the current perceived operating conditions. As with the specialist
findings, the default recommendation is unsuitable and must be proven appropriate at every iteration of the program
to ensure truth of the results and operating safety. A specialist does not possess the ability to activate or deactivate
its associated behavior; such authority is only given to the Decision Broker.

3. Decision Broker
At the highest level of the framework lies the Decision Broker. Its role is to monitor all Behavior specialist

recommendations. It assumes ultimate authority over how the Urban NaviGator will operate while in autonomous
mode. Like the other entities within the framework, the Decision Broker can base its conclusions on not only the
recommendations and findings of other specialists, but it may also look at data from any other pertinent source. Team
Gator Nation’s implementation of the Adaptive Planning Framework centralizes all the Decision Broker functionality
within the JAUS Subsystem Commander and has the added responsibility of selecting which component receives
control of the vehicle’s JAUS Primitive Driver. The framework architecture employs an asynchronous, iterative,
forward chaining reasoning approach to decision making.

4. Data Marshalling and Metadata
The Adaptive Planning Framework does not specify a specific means for data marshalling nor does it restrict the

system architect to a particular data type or structure for distribution. The Urban NaviGator deployed by Team Gator
Nation is JAUS RA3.2 compliant. Consistent with the team’s existing JAUS implementation, the Adaptive Planning
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Framework data transport uses a publish/subscribe model. This allows for an arm’s length transaction between parties
and eliminates a step in latency associated with a centralized blackboard approach. Truth maintenance and transport
is handled by way of a JAUS Node Manager with added Metadata Management capability. A component may simply
subscribe to a publisher’s “mailing list” and they will automatically receive an update every time that publisher has an
updated finding or whenever there is a periodic synchronization pulse. Furthermore, the subscribers will have knowl-
edge of publisher’s state and will be aware of any abhorrent behavior that may lend itself to misinformed findings.

H. Behaviors
The Urban NaviGator is programmed with six behavior modes. The corresponding behavior specialist constantly

evaluates the appropriateness of its behavior mode and the decision broker determines which mode will have operation
of the vehicle.

1. Roadway Navigation
The Roadway Navigation behavior is the primary driving behavior deriving commands to be sent to the vehicle

actuators while the objective is lane following. This behavior will allow the vehicle to navigate the roadway within
the lines of its desired lane and maintain a safe following distance behind any vehicles ahead.

2. Open Area Navigation
Open area navigation is a behavior that should only be needed in special circumstances during the Urban Challenge

event. This behavior allows the vehicle to move towards a goal location without striking any object, while avoiding
any rough terrain. This is in effect the only behavior mode that was required in the 2005 DARPA Urban Challenge.
It will be useful in the Urban Challenge when the vehicle is in an open area such as a parking lot prior to performing
an actual parking maneuver.

3. Change Lane Maneuver
The change lane maneuver will be used in passing situations or in cases where the vehicle must change lanes in

a multi-lane road in order to pass through a mission goal point. The behavior will constrain the vehicle to remain
within the lane boundaries of the new lane.

4. Reverse Direction
This behavior is called whenever it is determined that the current lane is blocked and there is no alternate clear

lane available for passing. It will also be applicable in cases where the vehicle has entered a “dead end” road that it
must “escape” to reach a mission goal point.

5. Intersection Traversal
The intersection traversal behavior will be applicable when the vehicle enters the vicinity of an intersection. This

is one of the most complicated behavior modes in that the system must rely on a series of situation assessment
specialists to safely navigate the intersection. This behavior mode must handle queuing, stopping at the stop line,
determining right of way, and ultimately traveling through the intersection while avoiding other vehicles.

6. Parking Lot
This behavior must deal with the problems that arise in the parking lot scenario where precise motion is necessary.

When the vehicle approaches the vicinity of an assigned parking space, precise path planning will be initiated to
align the vehicle as required. Situation assessment specialists will be monitoring the near surroundings of the vehicle
to center the vehicle in its parking space while avoiding any static or dynamic objects.

I. Smart Arbiter
The purpose of the Smart Arbiter component is to generate a 60 m × 60 m traversability grid, centered at the

vehicle’s current position, which is used to implement a desired behavior. Motion execution, which is discussed in
the next section, is accomplished via an A∗ search through this grid to determine the least cost path. In most cases, the
least cost path will be obvious as the grid has been constructed to accomplish a desired action. An important feature
of this entire approach is that specific behavior modes can be changed with smooth continual control of the vehicle.
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The Smart Arbiter obtains inputs from the Terrain Smart Sensor, the Lane Finding Smart Sensor, the Path Finding
Smart Sensor, and the LWM and will build its grid based on the current behavior mode of the system. For example,
if the system is in the Roadway Navigation behavior, then the grid cells corresponding to the positions of the line on
the edge of the lane as identified by the Lane Finding Smart Sensor will be marked as non-traversable regions in the
Smart Arbiter grid. The cells corresponding to the road lane will be marked as highly traversable. This will prevent
the planner from planning outside the current lane.

J. Motion Execution
Real time motion planning is accomplished via a receding horizon controller. Receding horizon is a form of

Model Predictive Control (MPC) used to solve complex and constrained optimization problems.20 The application of
suboptimal MPC to nonlinear systems such as the Urban NaviGator is presented by Scokaert.21 In this case, receding
horizon control is used to optimize a trajectory through the traversable space the vehicle will encounter. Inputs to the
control component include the sensed, cumulative 60 m × 60 m traversability grid that is assembled by the Smart
Arbiter component.

Local path planning is accomplished by means of an A∗ search algorithm.22 The goal is to optimize the cost of the
trajectory from the current vehicle position to a goal position, and thereby find a set of open loop actuator commands
that minimize the cost of traversal. The search finds different trajectories by generating possible input commands
and extrapolating them through a vehicle kinematics model. The model used is that of a front-wheel steered, rear-
wheel drive vehicle. The costs of the different trajectories are based on distance traveled and the traversability grid
values encountered. Figure 26 shows path segments that were searched and the final determined path. Tests with the
algorithm have shown that it is able to calculate an optimal path at an update rate over 30 Hz.

Closed loop control is achieved by repeatedly running the optimization algorithm as traversability grid data and
vehicle state information are updated. Steering actuator commands are optimized through theA∗ search, while throttle
and brake commands used to control speed are handled using a simple PID controller.

III. Results and Performance
The previous section presented the ten primary elements that comprise Team Gator Nation’s NaviGator vehicle

system. Although much of the discussion focused on how each element works, information was also presented about
why each element was designed as it was. Implementation examples and results associated with most of the ten
elements were presented in the previous section for clarification. This section will focus on results and performance
associated with integration and implementation. It must be noted that the development process is ongoing so that
complete results are not presently available. Interim results can be seen in the accompanying video.

Fig. 26 Path search algorithm.
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Fig. 27 Data from autonomous roadway navigation.

Figure 27 shows the results from a recent Roadway Navigation test. The roadway is marked by the green lines and
has a nominal width of 28′. Figure 27(b) shows a magnified view of one of the corners. Lane tracking and traversal
have been successfully demonstrated as shown by the blue lines in the figures. Although this is a simple result, it does
also demonstrate that the necessary components such as the LWM and the Smart Arbiter have been developed and
integrated with the Receding Horizon controller and the Primitive Driver. These are the important building blocks
that must first be in place before the more complicated behavior modes can be introduced.

IV. Conclusion
The performance requirements identified in the Urban Challenge Technical Evaluation Criteria are challenging.

The system must be able to detect and model its environment and then plan and execute appropriate actions in real time.
The approach described in this paper was generated after careful consideration of the design requirements. The

central concept is the integration of a priori and sensed information in a raster format in the LWM. Based on this
information, an appropriate behavior is selected via arbitration. The behavior is executed by generation of a navigation
grid coupled with metadata.

The primary new contribution of this approach is that related to solving the technical challenges of (a) the
reconciliation of differences in estimated global pose, a priori data, and sensed information, (b) the determination
of the appropriate behavior mode, and (c) the smooth transition of vehicle control between behavior modes. These
particular developments are being implemented and integrated with the necessary hardware and software components
to address the requirements of the DARPA Urban Challenge.
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